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Abstract

Information encoded in natural language in biomedical literature publications is only useful if efficient
and reliable ways of accessing and analyzing that information are available. Natural language processing
and text mining tools are therefore essential for extracting valuable information, however, the
development of powerful, highly effective tools to automatically detect central biomedical concepts
such as diseases is conditional on the availability of annotated corpora.

This paper presents the disease name and concept annotations of the NCBI disease corpus, a collection
of 793 PubMed abstracts fully annotated at the mention and concept level to serve as a research
resource for the biomedical natural language processing community. Each PubMed abstract was
manually annotated by two annotators with disease mentions and their corresponding concepts in
Medical Subject Headings (MeSH") or Online Mendelian Inheritance in Man (OMIM®). Manual curation
was performed using PubTator, which allowed the use of pre-annotations as a pre-step to manual
annotations. Fourteen annotators were randomly paired and differing annotations were discussed for
reaching a consensus in two annotation phases. In this setting, a high inter-annotator agreement was
observed. Finally, all results were checked against annotations of the rest of the corpus to assure
corpus-wide consistency.

The public release of the NCBI disease corpus contains 6,892 disease mentions, which are mapped to
790 unique disease concepts. Of these, 88% link to a MeSH identifier, while the rest contain an OMIM
identifier. We were able to link 91% of the mentions to a single disease concept, while the rest are
described as a combination of concepts. In order to help researchers use the corpus to design and test
disease identification methods, we have prepared the corpus as training, testing and development sets.
To demonstrate its utility, we conducted a benchmarking experiment where we compared three
different knowledge-based disease normalization methods with a best performance in F-measure of
63.7%. These results show that the NCBI disease corpus has the potential to significantly improve the
state-of-the-art in disease name recognition and normalization research, by providing a high-quality gold
standard thus enabling the development of machine-learning based approaches for such tasks.

The NCBI disease corpus, guidelines and other associated resources are available at:
http://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/.
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1. Background

1.1. The importance of disease name recognition for biomedical
research
Disease is one of the fundamental biological entities in biomedical research, one of main research goals
at the National Institutes of Health, and as a result, it is frequently searched for in literature [1] and on
the Internet [2]. Hence, like other named entity recognition tasks and similar to gene name
identification [3, 4], disease name recognition is an important task in biomedical text mining and plays a
critical role in accelerating scientific discovery and contributing to improved information access [5].

Automatic disease recognition from free text is a challenging task due to both variation and ambiguity in
disease names, as well as its definition (e.g., is fever a disease?) [5, 6]. From a taxonomic system point of
view -- there is significant ambiguity in what is a disease name: adenomatous polyposis coli and Friedrich
ataxia can be both gene and disease names. Abbreviated disease names are common in biomedical
literature, and the same abbreviation may stand for many different diseases. For example, AS may stand
for Angelman syndrome, ankylosing spondylitis, aortic stenosis, Asperger syndrome, autism spectrum,
etc. Lastly, while it is extremely important to allow doctors and health practitioners the freedom to
effectively describe a disease by use of descriptive expressions, this poses a higher level of difficulty for
applying automatic identification methods to medical text [7, 8].

Current disease name entity recognition methods generally contain two separate steps: disease mention
recognition, followed by disease concept recognition, i.e., the grounding of the pre-identified disease
mentions to corresponding standard database identifiers [6, 9]. The second step, concept recognition
(also known as normalization), is crucial for specifying the diseases mentioned in text. A PubMed article
may reference the same disease concept multiple times, possibly using variations of one or more of its
accepted full terms (long form) and also abbreviations (short forms). After normalization, unique disease
concepts can be further used for a number of downstream analyses: Providing users with the ability to
find a more relevant subset of resources based on user queries; allowing for detecting unique
associations between diseases and genes in the literature; etc.

Previous studies on automatic disease mention recognition show that machine-learning based
approaches [10, 11] compare favorably to dictionary lookup or rule-based methods. However, to our
best knowledge, most approaches on disease normalization are knowledge-based as opposed to
learning-based [12, 13], which is related to the lack of sufficient gold-standard training data. We also
note that fewer attempts to recognize disease names have been reported compared to the large body
of work on gene normalization studies, such as [14-16].



1.2. Constructing high-quality corpora for disease name recognition
Manually annotated high-quality corpora are of utmost importance for the development of
sophisticated NLP systems, both as training data and for evaluative purposes. Manually annotated
biomedical corpora have consistently made possible the achievement of improved results in biomedical
NLP research, with impressive results being observed in tokenization tasks [17], part-of-speech
identification tasks [18, 19], clinical concept identification tasks [20], etc.

To assist the development and evaluation of the disease name recognition task, we have developed a
disease corpus, namely the NCBI disease corpus. The construction of the NCBI disease corpus went
through two major phases: mention-level annotation and concept-level annotation. As a result, the NCBI
disease corpus was manually annotated for every disease mention and its corresponding concept for a
total of 793 PubMed abstracts. The mention-level annotation work has been described in [21].In a
nutshell, disease mentions were annotated based on their relevance for biomedical information
retrieval tasks that involve diseases. Annotation guidelines allowed flexible matching to UMLS concepts
and categorized four annotation categories: Composite mentions, Modifiers, Disease Class mentions and
Specific Diseases. The corpus was reviewed several times by several annotators and when used as gold-
standard data for a state-of-the-art machine learning system, it was able to significantly improve its
performance for disease name recognition [21]. The second phase was the concept-level annotation
which completes the NCBI disease corpus as a disease name recognition resource, and releases it to the
community in its complete form. The completed NCBI disease corpus has already enabled the creation
and evaluation of the first machine learning method for disease normalization, DNorm, which relies on
the joint mention-level and concept-level annotations of the corpus to learn term variations directly
from the training data [22].

The objective of our work is not only to facilitate information retrieval tasks that involve diseases, but
also to facilitate future applications of complex information retrieval tasks connecting diseases to
treatments, causes or other types of information, specifically for biomedical literature. Hence, the next
important step towards this goal is the entity normalization task that involves mapping mentions to
standard database/ontology identifiers. In the present paper, we present our work on developing the
NCBI disease corpus to map the individual disease mentions to standard disease controlled vocabularies,
namely MeSH (http://www.nlm.nih.gov/mesh/) and OMIM (http://www.ncbi.nlm.nih.gov/omim)
identifiers.

Finding a vocabulary for capturing disease data is a very important decision. We wanted a disease
vocabulary that was reliable, publicly available, relatively stable, regularly maintained, and suitable for
indexing biomedical literature. We were looking for a vocabulary source that was previously used and
would naturally be used in the future as an annotation source for biomedical text in order to facilitate
interoperability. We focused on MeSH ‘Diseases’ branch, and added the specificity of OMIM identifiers
for genetic diseases, as practically combined in MEDIC, the MErged Dlisease voCabulary [23]. In essence,
MEDIC is a combination of the MeSH ‘disease’ branch and OMIM such that it is both deep and broad (we
downloaded MEDIC on April 17, 2012, which contained 9,661 disease concepts, and about 67,000
terms). It also contains significantly fewer concepts/terms compared to the UMLS Metathesaurus [24],
which makes it more convenient for real-life manual curation.



1.3. NCBI disease corpus for disease name recognition
The work to develop the NCBI disease corpus is closely related to several other corpus construction
efforts in the biomedical domain [25-34]. These studies specifically agree on: 1. the need for multiple
experienced annotators; 2. the need for detailed annotation guidelines; and 3. the need for large scale
high-quality annotation corpora. The NCBI disease corpus fulfills all these needs and constitutes
therefore a significant resource for disease name entity recognition research in biomedical text.

The NCBI disease corpus also is not the first resource for disease entity recognition in biomedical
research. This corpus significantly extends two existing disease corpora [11, 13]. Major differences
between the new corpus and the two previous corpora include three aspects (shown in Table 1). First,
all sentences in an abstract are selected for annotation in the NCBI disease corpus, which is important to
enable higher level text mining tasks that explore relationships between diseases and other types of
entities such as genes or drugs in the same abstract. As a result, the NCBI disease corpus is also several
times larger than the existing corpora. Second, a novel aspect of our concept annotation lies in the use
of the recently developed MEDIC vocabulary for assigning disease concepts [23]. Finally, unlike the
annotations in the two previous corpora, each annotation in our corpus was completed by at least two
individuals. We believe having multiple annotations helps ensure higher quality results: both more
objective and fewer missing ones, which have been recently noted as an issue by researchers developing
a disease normalization system [35].

Table 1 Characteristics of disease corpora

Disease Corpus Corpus Size Disease Disease Concept Number of
Mention Ontology Annotators
Jimeno et al., 2008 856 selected sentences in No UMLS 2
642 abstracts
Leaman et al., 2009 2,783 selected sentences in Yes UMLS 1
793 abstracts
NCBI disease corpus : All 6,881 sentences in 793 Yes MEDIC 14
abstracts

The contributions of this article are: 1. A comprehensive description of the annotation process for
constructing the NCBI disease corpus, 2. A thorough exploration of the NCBI disease corpus and its
characteristics, 3. An introduction of the NCBI disease corpus as a resource setup to build and evaluate
new disease name recognition methods, 4. An initial evaluation of three different disease recognition
models and their description, 5. An analysis of the results and future directions for improvement, and
finally and most importantly 6. The public release of the NCBI disease corpus to the biomedical
community for further use and research. The rest of the article is organized as follows: In the Methods
section we describe the corpus and tools used to perform the annotation task, the annotation
guidelines, the annotation process, and the measurement tests and the procedure to ensure the quality
of resulting annotations. Furthermore, we follow by a description of the three disease name recognition
methods that were used to identify disease concepts in the NCBI disease corpus. The Results section lists
the inter-annotator agreement results, details and summarizes the NCBI disease corpus characteristics,




and then explores and compares the results of three different approaches for disease name recognition
on the NCBI disease corpus. In the next section, we discuss the choice of the terminology resource,
advantages, disadvantages and limitations of preferring one terminology resource as opposed to others,
the challenges of disease name normalization as opposed to other related tasks such as gene name
normalization, specifically how these all relate to the NCBI disease corpus, and lastly, we give our
concluding remarks in Section 5.

2. Methods

2.1. Data Sources and Preparation
The annotation work on the NCBI disease corpus was performed in two stages, where annotators
worked both individually and in pairs to rectify differences in annotation and ensure the construction of
a high-quality product. At the beginning, annotators were also provided help in the form of pre-
annotations and an easy-to-use web-based annotation tool PubTator [35, 36], whose versatility in
biomedical concept annotation has been demonstrated in the recent BioCreative tasks. The first stage
took place in summer 2011 when a group of 12 annotators each annotated an average of 125 PubMed
documents, so that for each document we had at least two annotators. This work resulted in a
completely annotated disease mentions corpus [21]. Disease mentions were categorized in four
categories: Specific Disease or Disease Class, (i.e., <Specific Disease> Diastrophic dysplasia </> is an
<Disease Class> autosomal recessive disease </> characterized by ... .) or Composite Mention (i.e.,
<CompositeMention> Combined genetic deficiency of C6 and C7 </>in man. ) or Modifier (i.e., The
Israeli <Modifier> C7-deficient </> cases all share a C7 haplotype .... ). The second stage took place in
summer 2012 when a group of 14 annotators (10 overlapped with the first group) annotated 120
PubMed documents each on average, so that for each citation we had at least two annotators. This work
improved consistency of the mention level annotations, and added the normalization layer of
annotations, so that each disease mention in text is linked to a standardized medical vocabulary entry,
namely a MeSH descriptor or OMIM identifier, as listed in the MEDIC vocabulary.

2.1.1. Annotators and the pre-annotation process
The annotator group consisted of 14 people with backgrounds in biomedical informatics research and
experience in biomedical text corpus annotation. The 793 PubMed citations were divided into sets of 30
PubMed citations each. Every annotator worked on 4 or 5 sets of 30 PubMed abstracts. The sets were
divided randomly among annotators such that each set was shared by at least two people. To avoid
annotator bias, pairs of annotators were chosen randomly for each set, so that each pair of annotators
overlapped for at most two sets.

According to our own experience [27, 36] and others [37], automatic pre-annotation can help accelerate
the manual annotation process. First, each PMID document was pre-annotated using the Inference
Method developed for disease name normalization [9], which properly handles abbreviation
recognition, robust string matching, etc. As such, human annotators were given the pre-annotated
documents as a starting point and allowed to see each pre-annotation with a computed confidence.



Annotators were also told about the limitations of the automatic method, such as incomplete results for
composite disease mentions.

2.1.2. Annotation guidelines
For disease concept annotation, annotators were encouraged to use their domain knowledge, as well as
any other public resources such as UMLS and Wikipedia. Initially, a set of 20 randomly chosen PubMed
abstracts was used as a practice set for the development of annotation guidelines. After each annotator
worked individually on the set, the results were shared and discussed among all annotators. The final
annotation guidelines are summarized below and also made available at the corpus download website.

To explain our annotation rules, we use the disease mentions in the following text (bolded) as a running
example: “The Schwartz-Jampel syndrome (SJS) is a recessively inherited condition defined by
myotonia, short stature, and bone dysplasia.”

1. Annotate the concept that matches the preferred name.
There are several matches for “myotonia” in MEDIC: Myotonia [MESH:D009222], Myotonia
Congenita [MESH:D009224], Myotonic Disorders [MESH:D020967], Myotonic Dystrophy
[MESH:D009223], etc. For the mention “myotonia”, the entry MESH:D009222 is selected
because it provides a perfect match to this concept’s preferred name. Moreover, the
descriptions of the other possible matches do not provide a better fit when taking into account
the context of the article.

2. Annotate the concept that matches the synonym name, unless there is another concept that
matches the preferred name.
Several MEDIC entries may match the mention “bone dysplasia”: Bone Diseases, Developmental
[MESH:D001848], Gracile bone dysplasia [MESH:C537291], Fibrous Dysplasia of Bone
[MESH:D005357], etc. For the mention “bone dysplasia”, the entry MESH:D001848 is selected
because it lists a synonym which is a perfect match to this mention.

3. Annotate the most specific concept that correctly describes the disease mention. Certain
disease concepts in MeSH are disease classes, which are described with a MeSH entry term and
several synonymous terms corresponding to the specific disease names within that class. In such
cases, MEDIC lists the correct MeSH ID for the concept as well as a secondary list of OMIM
identifiers for the specific diseases within that class. For example, the MEDIC entry for
“Schwartz-Jampel syndrome” is Osteochondrodysplasias [MeSH: D010009], with a secondary
list of specific identifiers: OMIM: 239100, 255800, and 309350. The disease “Schwartz-Jampel
syndrome” is a synonym for the MeSH entry D010009. A closer consideration of the list of
OMIM identifiers reveals that OMIM:239100 corresponds to Van Buchem Disease,
OMIM:255800 to Schwartz-Jampel syndrome, and OMIM:30930 to Melnick-Needles Syndrome,
which are all synonyms of the MeSH entry term Osteochondrodysplasias. Hence, for the
mention “Schwartz-Jampel syndrome”, the entry OMIM:255800 is selected as the normalized
concept because it is the disease concept that correctly describes the mention. In the cases



where MEDIC lists one MeSH descriptor and one OMIM identifier, these two identifiers are
considered equivalent; therefore either one can be selected.

Annotate the closest hypernym concept that logically describes the disease mention.

Certain disease mentions in text are hard to map to a disease concept in the dictionary. For
example, a search in MEDIC for “recessively inherited condition” produces no results and other
sophisticated string matching approaches report unrelated results. The mention “recessively
inherited condition” though, is annotated as a disease name in our corpus, and the entry
Genetic Diseases, Inborn [MeSH:D030342] is chosen as the correct normalization because it
provides the closest hypernym logical concept that correctly describes the disease mention. In
this case however, MeSH is not specific enough and does not distinguish inherited diseases as
dominant versus recessive, so a less specific mapping is produced. We discuss these cases
further in the Discussion session.

Annotate all concepts in a composite disease mention using the “|” separator.

Composite mentions such as: “colorectal, endometrial, and ovarian cancers” can be normalized
to the collection of the individual constituents MeSH: D010051|D016889|D015179. The “|”
character is used to compose this mapping, and this signals the presence of a composite

mapping.

Annotate a disease mention using multiple concepts to logically describe the disease mention,
using the “+” concatenator.

In rare cases, representing a disease mention may require multiple concepts. For example, a
mapping can be produced between the mention “inherited neuromuscular disease” and the
concept Neuromuscular Disease [MeSH:D009468]. However, the MeSH entry description of
D009468 does not imply that these diseases are inherited. Hence, a combination of identifiers:
Neuromuscular Disease [MeSH:D009468] + Genetic Diseases, Inborn [MeSH:D030342] is a
better concept normalization for that mention. The “+” character is used to compose this
mapping, and this signals the presence of a multiple concept mapping, not to be confused with a
composite mapping.

Annotate a disease mention even if that mention is used interchangeably as a gene name.

If the same mention is used as both a disease name and a gene name, therefore introducing a
gene name — disease name ambiguity, then the mention is considered a disease name mention.
This particular guideline was motivated by the fact that we wanted to be thorough in our
annotation process, and annotate every textual mention that referred to a disease. This meant
that sometimes the disease mention was not a noun phrase but a modifier (disease annotation
tag: Modifier). A typical example would be: “... the <Modifier> VHL </Modifier> gene...”. The
ambiguous mention is annotated and normalized to the VHL disease name concept; because
VHL is a recognized synonym for the disease term Von Hippel-Lindau, and the phrase “VHL
gene” is interpreted as “the gene causing the disease VHL".



8. When necessary, use specific concepts in OMIM not included in MEDIC.
It is possible that a disease mention may not be covered in MEDIC. This was experienced by our
annotators a handful of times. For these cases, we adopted the following solution: if OMIM
contained a concept that described that disease mention, we used this identifier accordingly.
For example: Leptin deficiency [OMIM:164160] and Complement Component 9 deficiency
[OMIM:613825] are annotated in our corpus although they were not included in the Spring 2012
version of MEDIC that was used for this work.

2.1.3. Annotation process and the annotator software
Similar to the steps in disease mention annotation [21] the annotation of disease concepts was also
organized in consecutive phases and used PubTator [36, 38] as the web-based annotation tool . Phase |
consisted of each pre-annotated abstract in the corpus being read and reviewed by two annotators
working independently. Annotators could agree with the pre-annotation, remove it, or modify it.
Annotators could also add new mappings. The annotation software automatically updated duplicated
mentions within the same document, thus ensuring consistency of annotations within each document.
After this round of independent annotation, a summary document was created highlighting the
agreement and differences between annotators. Accordingly, inter-annotator agreement was calculated
at this step and it is reported in the Results section.

In Phase Il, each annotator examined and edited his or her own annotations by reviewing the
differences reported in the Phase | summary. The annotation software allowed that each annotator to
compare their results for each set with those of other annotators that worked on the same set. Visual
cues were implemented to signal agreement and disagreement between annotators at two granularity
levels: PMID document level and PMID annotation set level.

At the PMID document level, as illustrated in Figure 1, the annotator sees the title and abstract of the
document, with the highlighted disease mentions. Below the text box, a table of all mentions is
produced contrasting the annotations between annotators. Each annotator may see the others’
selections, but can only edit his/her own work. To facilitate the review process, this view also allows for
one-click access to the MEDIC records of the normalized concepts. At the PMID annotation set level, not
shown, each annotator sees the list of PMID titles of the shared annotation set. For each PubMed
citation, if all annotators agree on all annotations, then that citation is highlighted in the summary view,
to signal agreement.

After this round, an additional summary similar to that of Phase | was generated to highlight the
remaining differences after Phase Il. Then, each pair of annotators organized meetings where they
discussed and resolved their differences. After these meetings, a consensus set of annotations was
produced for each PubMed abstract.

The final Phase of the annotation process consisted of the first author going over all annotated
documents and ensuring that annotations were consistent across different abstracts and different
annotation sets. Lists of problematic annotations were produced and discussed in a final annotators
meeting, where all discrepancies were resolved.



PMID:10633128 Friedreich ataxia: an overview.
Publication: Journal of medical genetics; 2000 Jan ; 37(1) 1-8
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ABSTRACT:

Friedreich ataxia, an autosomal recessive degen e disease. is the most common of the inherited ataxias. The recent discovery of
the gene that is mutated in thJs condmon FRDA has led to rap1d advances in the understanding of the pathogenesis of Friedreich ataxia.
About 98% of mutant alleles have an expansion of a GAA trinucleotide repeat in intron 1 of the gene. This leads to reduced levels of the
protein, frataxin. There is mounting evidence to suggest that Friedreich ataxia is the result of accumulation of iron in mitochondria leading
to excess production of free radicals, which then results in cellular damage and death. Currently there is no known treatment that alters the
natural course of the disease. The discovery of the FRDA gene and its possible function has raised hope that rational therapeutic
strategies will be developed..
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Figure 1 Screenshot of our annotation software PubTator displaying the differences in annotation for
two annotators at the end of Phase I.

2.1.4. Annotation Consistency Evaluation Metrics
We measured the annotators’ agreement after Phase | of the annotation process. One way to measure
the agreement between two annotators is to measure their observed agreement on the sample of
annotated items. We measured agreement by computing the F-measure between each pair of
annotators that worked on the same set of documents, as also noted in [26, 39].

Agreement statistics are measured for each annotator pair. First an F-measure agreement average is
computed for all annotated mentions in each PMID document in the shared annotation set. Then the
average over all PubMed documents of the shared set is computed. Next, for each annotator pair, the
average agreement statistic is computed over all annotation sets that they shared.

2.2. Disease normalization methods

As an attempt to demonstrate its utility, we used our corpus as a gold standard for benchmarking three
different disease normalization methods. The methods are used at an ab-initio setting, where both
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disease mention recognition and disease concept normalization is performed. The methods
performances are compared after the normalization step. The NCBI disease corpus has also been used
for the development of a successful machine learning method for disease name normalization, DNorm.

2.2.1. Dictionary look-up method
The traditional dictionary look-up performs exact matching using terms in the vocabulary. This method
matches the disease name as it appears in the terminology and is therefore not robust against term
variability that was not foreseen during creation of the lexicon. In addition, precision may be affected by
ambiguous or nested terms. To address those issues, we used Norm, from the SPECIALIST lexical tools
(http://lexsrv3.nlm.nih.gov/SPECIALIST/index.html) to preprocess all disease names in the MEDIC
lexicon including their synonyms. The normalized names and synonyms were then applied to the strings

and substrings of the PMID documents in the NCBI disease corpus. When a textual string in the PubMed
abstracts in the NCBI testing set was mapped by Norm to a disease mention in the MEDIC lexicon, that
disease mention is grounded to the corresponding MEDIC concept. The results of this string matching
method are reported as Norm in the Results section.

2.2.2. MetaMap Processing
MetaMap [12] is the state-of-the-art natural language processing tool for identifying UMLS
Metathesaurus concepts in biomedical text. MetaMap splits the given input text into sentences, and the
set of sentences into phrases. For each phrase, MetaMap identifies possible mappings based on lexical
look-up and on variants associating a score to each one of them. MetaMap identifies several possible
mappings in each phrase and several candidates for each one.

In this work, the text of PubMed citations in the NCBI disease corpus, title and abstract, was run through
the MetaMap Web tool to identify all UMLS concepts in that text. Next, for each PMID, the list of UMLS
concept identifiers (CUIs) found by MetaMap was mapped to their corresponding MeSH descriptors and
OMIM identifiers. The resulting MeSH and OMIM identifiers were further filtered in two ways:

a. Only concepts associated with the disorder Semantic Group were kept (i.e., concepts linked to
these semantic types: Acquired Abnormality, Anatomical Abnormality, Congenital Abnormality,
Cell or Molecular Dysfunction, Disease or Syndrome, Experimental Model of Disease, Injury or
Poisoning, Mental or Behavioral Dysfunction, Neoplastic Process, Pathologic Function, Sign or
Symptom).

b. Only concepts in MEDIC were kept.

The filtered set of MeSH and OMIM ids was evaluated against the gold-standard annotations. Results
are reported as MetaMap results.

2.2.3. The Inference Method
The Inference Method is our prior work [9] on disease normalization. Our results (F-measure: 79%)
showed that this method linked disease mentions to their corresponding medical vocabulary entry with
high precision. The core of the Inference Method was built as a combination of several string matching
rules that mapped the annotated strings to the names of the diseases as listed in the standard disease
dictionary and/or their accompanying list of synonyms. In addition, this method successfully exploited
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the fact that the long form of the disease is usually defined elsewhere in the same abstract. Once the
abbreviation was resolved, the knowledge of the mapping of the long form of the disease was used to
infer the mapping of the abbreviated mention. Gold standard data is essential in building a successful
normalization method. The Inference Method was designed and refined on a manually annotated set of
PubMed abstract sentences which reflected the consensus annotation agreement of the EBI disease
corpus[13] and the AZDC disease corpus [11] (the only available data at the time). Because the original
annotations used UMLS as a resource, UMLS concepts were converted to MeSH descriptors. Because the
textual mentions were missing from the original annotations, NCBI disease corpus annotations were
consulted to build the Inference Method gold standard set. In this work, this method was used both for
generating NCBI disease corpus pre-annotations, and as a disease name normalization benchmark. To
evaluate its performance in an ab-initio setting, first BANNER [40] was applied on each PubMed abstract
for disease mention recognition, and then, the Inference Method was applied for disease name
normalization.

3. Results

3.1. Inter-annotator Agreement
Overall, we achieved a high agreement between annotators as shown in Figure 2 where each dot
represents a comparison score between two annotators for one or more shared sets. The red dotted
line shows the average F-score agreement over all annotator pairs.
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Figure 2 Inter-annotator annotation agreement for the disease name normalization task. The red dotted
line shows the average F-score among all annotator pairs.

3.2. NCBI disease corpus statistics

NCBI disease corpus contains 793 fully annotated PubMed citations. This constitutes more than 6K
sentences, of which more than half contain disease names. For benchmarking purposes, the entire
corpus was split into three subsets (training, development, and test sets). As shown in Table 2, there are
2,136 unique disease mentions total, mapped to 790 unique database identifiers.

Table 2 NCBI disease corpus as training, development and testing sets for disease name recognition

Corpus Characteristics Training set Development set Test set Whole Corpus
PubMed Citations 593 100 100 793
Total disease mentions 5,145 787 960 6,892
Unique disease mentions 1,710 368 427 2,136
Unique Concept ID 670 176 203 790
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3.2.1. Distribution of annotated concepts per PubMed citation
On average, the NCBI disease corpus contains 5.08 disease mentions and 3.28 disease concepts per
PubMed abstract. Detailed breakdown of the number of unique mentions and concepts per abstract is
shown in Figure 3. As shown, while the proportion of articles that contain only a single disease mention
is merely 5%, the proportion of articles linking to a single disease concept is higher than 26%. The reason
is that there are many ways in mentioning the same concept as manifested in Figure 2. Incidentally, the
concept Genetic Diseases, Inborn [D030342] is the most frequent concept, appearing in 113 different
documents, while “cancer” is the most frequent mention, appearing in 44 documents. The top 10 most
common disease mentions and disease concepts in the NCBI disease corpus are listed in Table 3.

® Unique Mentions per Article m Unique Concepts per Article
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0.20
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o
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Figure 3 Distribution of mentions and concepts in the corpus documents.
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Table 3 The most common disease mentions and disease concepts in the NCBI disease corpus, with the

corresponding number of abstracts they appear in.

Disease mentions (number of abstracts)

Disease concepts (number of abstracts)

Cancer (44)

D030342 - Genetic Diseases, Inborn (113)

Tumor (43)

D009369 - Neoplasms (112)

Breast cancer (41)

D061325 - Hereditary Breast and Ovarian Cancer
Syndrome (52)

DM (39)

D001943 - Breast Neoplasms (46)

Myotonic dystrophy (35)

D009223 - Myotonic Dystrophy (42)

G6PD deficiency (33)

D005955 - Glucosephosphate Dehydrogenase
Deficiency (36)

DMD (33) D020388 - Muscular Dystrophy, Duchenne (33)
Ataxia-telangiectasia (30) D011125 - Adenomatous Polyposis Coli (33)
APC (29) D001260 - Ataxia Telangiectasia (31)

Duchene muscular dystrophy (27)

D010051 - Ovarian Neoplasms (27)

3.2.2. Coverage of MeSH and OMIM concepts
One novel aspect of this work is the fact that disease mentions are linked to MeSH descriptors and/or

OMIM identifiers. Out of 790 unique disease name normalizations, 698 (or 88%) are composed of MeSH
identifiers, and 92 (or 12%) contain an OMIM identifier. The distribution of these across training,
development and testing set of the NCBI disease corpus is given in Table 4.

Table 4. Distribution of MeSH versus OMIM concepts

Set MeSH (unique) OMIM (total) Annotated Concepts (unique)
Training 1512 (599) 198 (71) 1710 (670)
Development 316 (153) 52 (23) 368 (176)
Testing 378 (182) 49 (21) 427 (203)
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3.2.3. NCBI disease corpus has low ambiguity level

Finally, 719 (or 91%) of the 790 normalizations in the NCBI disease corpus are single concepts, either
MeSH descriptors or OMIM identifiers, 52 normalized concepts are composite mappings corresponding
to composite mentions, and only 24 need combination of multiple concepts to describe the given
disease mentions. Typical examples of composite mappings are: pancreatic, basal cell, colonic, breast,
and cervical carcinomas (D010190|D002280|D015179|D001943 | D002583), Prader-Willi and Angelman
syndromes (D011218|D017204), syndromic and non-syndromic hearing loss (D034381|C537845), and
non-familial breast and ovarian cancers (D001943|D010051), etc. Examples of multiple concept
mappings are: autosomal recessive cardiodegenerative and neurodegenerative disease (Genetic
Diseases, Inborn [D030342] +Neurodegenerative Diseases [D019636]), chorioretinal dystrophy (Choroid
Diseases [D015862] + Retinal Dystrophies [D058499]), and ochronotic arthropathy (Joint Diseases
[D007592] + Ochronosis [D009794]).

3.2.4. One-to-one and many-to-one mappings to disease concepts in the NCBI disease corpus
On average, a disease concept is associated with 2.74 disease mentions in our corpus. As pointed out
above, the NCBI disease corpus is a resource with low-ambiguity level. For example, more than half of
the disease concepts in the NCBI disease corpus are associated with a disease mention in a one-to-one
mapping as shown in Figure 4. In our analysis, we found the following outliers: Twenty-six disease
concepts, or 3.3%, are associated with more than 10 textually different disease mentions, with the
maximum being 57. Of these, only four concepts correspond to general disease classes: Genetic
Diseases, Inborn [D030342] (“genetic disease,” “recessively inherited condition”), Neoplasms [D009369]
“cancer,” “sporadic tumors,” “bilateral and multifocal tumours”), Immunologic Deficiency Syndromes
[D007153] and Demyelinating Diseases [D003711]. These may represent opportunities for further
vocabulary refinement. The rest either correspond to specific diseases such as specific enzyme
deficiencies, such as Glucosephosphate Dehydrogenase Deficiency [D005955] (“Glucose 6-phosphate
dehydrogenase deficiency,” “G6PD-deficient,” “deficiency of G6PD”), or specific cancers, including
Hereditary Breast and Ovarian Cancer Syndrome [D061325] (“hereditary human breast and ovarian
cancer,” “inherited breast-ovarian cancer,” “breast-ovarian cancer-family syndrome”).These variabilities
reflect the productivity of language; recognizing these cases would likely benefit more from the
development of better machine learning methods for disease recognition.
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Figure 4 Distribution of disease name concepts with respect to the number of disease mention strings
that map to them.

3.3. Benchmarking results for disease normalization methods on NCBI
disease corpus

In this section we present the assessment of disease name resolution from natural language text. In this
task we want to link the diseases with the appropriate concept in the MEDIC dictionary. The evaluation
consists in comparing the annotations produced by each one of the methods with the annotations in the
gold standard (the NCBI disease corpus -- test dataset). We report the standard measures: precision,
recall and F-measure at two granularity levels (micro-average and macro-average). Micro-average
evaluation takes into consideration all predictions (unique) for each of the 100 PubMed citations that
constitute the NCBI test dataset, and compares them with the whole set of (unique) gold-standard
annotations. Macro-average evaluation first computes the standard measures for each PubMed citation
in the test dataset, and then takes a global average over all the values (see results in Tables 5 and 6).

Table 5. Benchmarking results of three disease normalization methods (micro-average)

Method Precision Recall F-measure

Dictionary look-up 0.218 0.685 0.331
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MetaMap (semantic type filtering) 0.475 0.644 0.547

MetaMap (MEDIC filtering) 0.502 0.665 0.572

Inference Method 0.533 0.662 0.591

Table 6. Benchmarking results of three disease normalization methods (macro-average)

Method Precision Recall F-measure
Dictionary look-up 0.213 0.718 0.316
MetaMap (semantic type filtering) 0.495 0.679 0.541
MetaMap (MEDIC filtering) 0.510 0.702 0.559
Inference Method 0.597 0.731 0.637
3.4. Error analysis for the disease name normalization with the NCBI

disease corpus
We performed an error analysis to help illustrate the relative strengths and weaknesses of the different
methods we employed. We randomly selected 20 PubMed abstracts from the testing dataset and
reviewed the output results of our methods. All methods experienced both false positives and false
negatives due to term variations not present in the lexicon, such as matching mention "neuromuscular
disorder" to concept Neuromuscular Diseases [D009468]. Dictionary lookup, in addition, suffered from a
large number of false positives due to matches from non-entity tokens, such as “be,” “all,” and “feed,”
to an abbreviation listed as a disease synonym. This type of error was successfully ignored by MetaMap
due to its use of syntactic filtering to ignore tokens not part of a noun phrase, and by the Inference
Method due to the specific handling of abbreviated disease terms. Very general disease terms such as
disorder, dysfunction, etc., were not considered interesting per our annotation guidelines and therefore
were not included in annotation. MetaMap results, although filtered accordingly to exclude such terms,
still produced a few remaining artifacts such as “nonsense mutation” and “suffering”. Another problem
found in the MetaMap results were mappings such as “deficiency” (from “deficiency of the ninth
component of complement”) to concept Malnutrition [D044342]. The Inference Method provided an
improvement by linking these mentions to concepts listed within the MeSH subtree of Immunologic
Deficiency Syndromes [D007153], although mappings to the wrong component number were often
observed. Another common type of error for the Inference Method was its tendency to map to the most
specific concept, for example the mention “cerebellar degeneration” was mapped to concept Subacute
Cerebellar Degeneration [C535352], instead of Cerebellar Degeneration, Primary [D013132]. The
Inference Method was able to handle more term variation than other methods, but also experienced
both false positives and false negatives due to named entity recognition errors (such as missing the “14”
in “paternal uniparental disomy 14”).

Finally, as can be seen in Tables 5 and 6, the dictionary method provides strong recall compared to the
other methods, but also the lowest precision. Using MEDIC to restrict the MetaMap results to diseases
provides both higher precision and higher recall than restricting the results using the UMLS semantic
types referring to disease. The recall increase is caused by the inclusion of some concepts in MEDIC,
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which are excluded from the set of UMLS semantic types such as “Findings” used for filtering to
maintain reasonable precision. The increase in precision is also expected as we are restricting MetaMap
results to the more focused domain by using MEDIC. The Inference Method provides the highest
precision, highest f-measure and the highest macro-averaged recall so far.

4. Discussion
Despite the efforts in the biomedical research community and the named-entity recognition challenge
tasks organized in the biomedical domain (BioCreative, BioNLP, TREC, i2b2, etc.,), disease name
recognition research has lacked in the development of competitive machine-learning methods due to
the unavailability of suitably-sized gold-standard corpora. The NCBI disease corpus is significantly larger
than the other available corpora with disease mention and/or concept annotations.

In addition, when we compare the NCBI disease corpus with the Jimeno et al., [13] and Leaman at al.
[11] corpora we can identify several substantial differences:

1. ThelJimeno et al. corpus does not have mention level annotation, and consists of only 856
PubMed sentences. It is important to have both mention and concept level annotation for
purposes of building better quality recognition methods.

2. The Leaman at al. corpus, while providing mention-level annotation for 2,783 PubMed
sentences, consists of concept level annotations to the most specific concept. This leads to
several inconsistencies, for example:

Cancer, cancers is found normalized to these concepts: “C0206663 — Neuroecodermal
tumor”, “C0006826 — malignant neoplasms”, “C1306459 — primary malignant neoplasm”,
“C0009402 — colorectal carcinoma”, “C1527249 — colorectal cancer”, “C0476089 —
endometrial carcinoma”, etc.

3. Both previous corpora consist of selected PubMed sentences, while the NCBI disease corpus
contains whole abstract annotations. We can see this difference in the annotation of
abbreviated disease names, and their mapping to the correct concept. We have studied this
issue in [9] and [22]. Our findings indicated that whole-document annotations improve the
ability to automatically identify the correct concepts, in particular for abbreviated disease
names, which occur frequently in biomedical literature.

Finally, the disease normalization methods results reported in this paper and in DNorm [22] show that
the NCBI disease corpus is a suitable resource of gold-standard data to build better, more accurate
models for disease name recognition.

4.1. Choosing a terminology resource
Several terminological resources are available that provide disease terms. Amongst the most used
resources are the Medical Subject Headings (MeSH), the National Cancer Institute (NCI) thesaurus
(http://www.cancer.gov/), SNOMED CT (http://www.ihtsdo.org/) and the UMLS National Library of
Medicine UMLS resource that encloses the whole medical language terminology into a single source.
Primarily, each of these has a different scope, and none of them has been designed to meet text mining
needs. Hence, the need for a useful resource for building more precise tools for disease name
recognition is still unmet.
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Previous corpora have used UMLS as a backbone to normalize disease mentions [11, 13]. While UMLS
Metathesaurus is the broadest resource of medical concepts, disease concepts correspond to only a
small subset of UMLS, namely the 12 semantic types that comprise the Disorder group. The latest
release of UMLS combines 136 source vocabularies, with a resulting set of approximately 3 million
(distinct) concepts. If we counted only the concepts comprising the 12 semantic types of the Disorder
group — creating smaller and hence more useful views of large terminology resources has also been
suggested by other studies in the literature, for example in [41] — we would still count more than
540,000 distinct concepts.

SNOMED CT [42] was developed to enable a consistent way to index clinical data and structure medical
records. At 66,000 concepts the SNOMED disorder branch may offer the right degree of granularity
which would be very useful for mining the clinical aspects of disease. An enrichment of the disease
mentions in the NCBI disease corpus with SNOMED terms could certainly make the NCBI disease corpus
more valuable for clinical applications. However for the present this remains as future work.

The MEDIC disease lexicon[23] is a manually curated resource that associates a MeSH descriptor from
the “Diseases” category, and/or a genetic disorder identifier from the OMIM database to disease names
found in PubMed literature. This collection, at 10,000 entries, created a sufficient combination for our
purposes, especially considering that neither MeSH nor OMIM have licensing restrictions. In addition, all
PubMed abstracts undergo MeSH terminology indexing. Therefore, linking the disease mention in
PubMed abstracts with the corresponding MeSH/OMIM identifiers would allow for easy integration with
these other NLM resources. Our work, which in a sense may serve as the first real life evaluation of
MEDIC, shows that MEDIC provides sufficient coverage for the disease concepts found in PubMed
citations, making this the right environment for disease name normalization for such purposes.

Other possible terminology resources that could be considered for such purposes are the Disease
Ontology [43] and the Human Phenotype Ontology [44]. A future work that links MeSH/OMIM ids in the
NCBI disease corpus with these other terminologies would undoubtedly be very useful for related
research on gene and protein functions. Another important detail to consider is the right level of
annotation with the terminology terms. Recent research efforts on large-scale community-wide
assessment of protein function annotation [45] illustrate the importance of annotation and the use of
the appropriate ontology for both annotation and evaluation of computational methods. A
computational method that only reports highly specific terminology terms is typically penalized in recall,
while a method that only reports the most general ontology terms would have higher recall but its
results would not be very useful in practice. Achieving the right balance is important and should be
investigated both from the evaluation point of view and form the annotation point of view.

4.1.1. Mapping disease mentions to disease concepts
Our annotation results revealed some limitations of using the MEDIC disease vocabulary. First, a handful
of disease concepts were discovered that were not included in MEDIC. For those, we decided to include
the appropriate OMIM identifiers (as explained in the Annotation guidelines section, guideline 8).
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Next, certain disease mentions were found to not be easily represented using the standard
categorizations. Thus we allowed multiple concept normalization. Multiple concept normalization was
used for composite disease mentions such as “colorectal and endometrial cancers” -> MeSH:
D010051|D016889. Of interest is the fact that the composite mention “hereditary breast and ovarian
cancer syndrome” has a special MeSH descriptor: D061325, and therefore there is no need for multiple
concept normalization MeSH: D001943 (breast cancer) | D010051 (ovarian cancer). Multiple concept
normalization was also used for providing a correct representation of a disease mention, when
normalization to a single disease concept did not sufficiently convey the meaning intended by the
authors, for example, “inherited muscular disease” is normalized to MeSH: D009468 - Neuromuscular
Diseases + D030342 - Genetic Diseases, Inborn.

Our annotation work also pointed out at certain future directions for standard vocabulary development.
For example, for some disease entries as shown in Figure 3, the large number of disease mentions
mapped to the same concept suggests that perhaps a more refined classification is needed. We also
identified disease nuances described in the literature which were lost during mapping, due to the lack of
specificities and or detailed categorizations of diseases:

Ex: “PRAD1 mRNA is abundantly expressed in seven of seven centrocytic lymphomas (Kiel classification),
in contrast to 13 closely related but noncentrocytic lymphomas.” The current mapping is: centrocytic
lymphomas -> Mantle cell ymphoma[MESH: D020522], noncentrocytic lymphomas -> Lymphoma
[MESH: D008223] since there exists no disjoint classification of lymphoma in MeSH or OMIM, into
centrocytic versus noncentrocytic.

“We explored the 30 Dutch kindreds well known to the Dutch X-ALD/AMN Study Group and phenotyped
77 male patients: 35 (46%) had adrenomyeloneuropathy (AMN) and 24 (31%) childhood cerebral ALD
(CCALD) or adolescent cerebral ALD (AdolCALD).” The current mapping is Adrenoleukodystrophy
[MeSH: D000326] since the specific categories identified in the article are not present in the standard
nomenclature. Note that, this is a normal and expected observation. Disease research articles are
expected to report variability, distinctions and subtypes of known diseases. With time, certain
distinctions will enter the vocabulary and get listed in the terminology resources. Regardless, a
successful disease recognition program is expected to recognize all the mentions listed in the article and
all the concepts they correspond to.

4.2. Disease name normalization as opposed to gene name

normalization
The logic employed to determine whether two entities should be considered synonymous is not the
same for genes and diseases. Genes can typically be sequenced and traced to a specific genomic
location, providing a significant degree of precision to the decision of whether or not two genes (or gene
products) represent the same entity. Diseases, on the other hand, are always defined descriptively,
through a collection of attributes, including symptoms, systems affected, references to disease
processes, or to the disease etiology. Since disease definitions require some judgment to apply, there is
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therefore a significant amount of ambiguity present in any discussion of disease. The resulting variation
is reflected in both disease names and the mentions used to refer to diseases.

Notably, none of the normalization methods we applied achieved performance comparable to systems
developed for gene normalization tasks. Gene normalization is better studied, partially due to the
existence of appropriate corpora for system development and evaluation, and also because shared tasks
such as BioCreative have consistently included a task involving gene normalization. In addition, recent
work in gene normalization has demonstrated that machine learning techniques provide a performance
advantage if the necessary training data is available [14-16]. We believe that the NCBI disease corpus,
with the joint annotation of mentions and concepts over the same text, will allow exploration of similar
machine learning techniques for disease names, which were previously not possible. In this regard, the
NCBI disease corpus will provide a valuable resource to the text mining researchers for the development
of more capable, more powerful system in the field of disease name recognition.

5. Conclusions
This work presents the NCBI disease corpus, a richly annotated corpus with disease names and their
corresponding MeSH and/or OMIM identifiers. This resource contains 793 PubMed abstracts, and lists
6,892 disease mentions, which are linked to 790 unique concepts, thus providing an important
foundation for improving the text-mining research on disease named entity recognition. Our
experiments demonstrated the feasibility of using the corpus as the basis for training learning models in
both named entity identification and concept recognition, and we expect these results to serve as
benchmark for other future methods. To facilitate future benchmarking experiments, the corpus is also
divided into training, development and testing sets.

The NCBI disease corpus contains annotations for all sentences in a PubMed document (title and
abstract), an important aspect in facilitating development of complex information retrieval tasks that
connect diseases to treatments, causes or other types of information. This corpus provides annotation
of disease mentions in four major categories: Specific Disease (i.e., clear-cell renal cell carcinoma),
Disease Class (i.e., cystic kidney diseases), Composite mentions (i.e., prostatic, pancreas, skin, and lung
cancer), and Modifier (i.e., hereditary breast cancer families) [21]. Disease normalization annotation
guidelines were designed with the goal of allowing flexible matching to MeSH (diseases branch) and
OMIM concepts, while retaining the true meaning of the specific mention. The current corpus was
reviewed several times by several annotators and describes a refined scale of the annotation categories.
The NCBI corpus can act as a basis for the development of more accurate machine learning systems for
disease name recognition and normalization, as well as boost research into other areas of biomedical
knowledge discovery pertaining to diseases.

Availability of supporting data

NCBI disease corpus is publically available at: http://www.ncbi.nlm.nih.gov/CBBresearch/
Dogan/DISEASE/. The data file, including all annotations of 793 PubMed abstracts will be available in
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XML, plain text and in the PubTator-compatible format. The disease corpus website also includes
detailed description of the annotation process and the annotation guidelines.
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